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S U M M A R Y  

The various formulations of Maxwell’s equations are reviewed with emphasis  o n  those 
formulations which mos t  readily form analogies with Navier’s equations.  Analogies involving 
scalar and vector potent,ials and electric and magnetic field components  are presented. 
Formulations allowing for  media  with dielectric and conducting properties are emphasized. I t  
is demonstrated that  many problems in electromagnetism can be solved using the NASTRAN 
fini te  e l e m e n t  code. 

Several fundamental  problems involving time harmonic solutions of Maxwell’s equations with 
known analytic solutions are solved using N A S T R A N  to demonstrate  convergence and mesh 
requirements.  Mesh  requirements  are studied as a function of frequency, conductivity, and 
dielectric properties. 

Applications in both low frequency and high frequency are highlighted. The  low frequency 
problems demonstrate  the ability to solve problems involving media  inhomogeneity and 
unbounded domains.  T h e  high frequency applications demonstrate  the ability to handle 
problems with large boundary to wavelength ratios. 

INTRODUCTION 

T h e  Applied Mathematics Division at the David Taylor Research Cen te r  ( D T R C )  has begun 
developing methods  using finite e lements  with N A S T R A N  to solve problems involving 
electromagnetic waves propagating in var ious media  or  scattered by objects in the field. This  
paper reports work supported by the Office of Naval Technology Exploratory Development  
Program, DTRC Project Manager ,  Dr .  Bruce Hood .  

T h e  fundamenta l  equations governing the propagation of electromagnetic waves are the 
Maxwell’s equat,ions. For many applications, the electric and magnetic field components  
satisfy the linear, damped wave or Helmholtz  equation. While there are six field components  
in electromagnetic problems, for  time harmonic fields, only three are independent .  T h e  
equations are,  therefore,  similar to the Navier’s equations governing a n  elastic solid. 
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In this paper, the several  ways of formulating Maxwell’s equations are presented. 
Formulations involving field vector components  are compared with formulat ions involving 
potential functions.  I t  is shown in the nex t  section that  it is possible to form analogies 
between Maxwell’s equations and the Navier’s equations.  Standard finite e l emen t  codes 
which solve the equations of elasticity (such as the NASTRAN code) ,  therefore,  with 
appropriate choices of material properties and boundary conditions, can be used to solve 
problems in electrom agne tics. 

In this paper, several  example problems in electromagnetism are solved using elastic analogies 
and the NASTRAN finite e lement  code. Examples  of interest  in low frequency applications 
and high frequency radar cross section applications are presented. The  examples  are all two 
dimensional;  however ,  the analogies and the ability to solve electromagnetism problems with 
NASTRAN are n o t  limited to two dimensional applications. All the applications use the 
IS2D8 element;  however ,  any of the solid e lements  can be employed. 

The  problems of modeling point dipoles in both conducting and nonconduct ing media  are 
studied in this paper. T h e  accurate modeling of dipole sources is critical for applications 
involving electromagnetic waves. The  results of these problems are compared with available 
analytic solutions.  A n  important  result  is determining the mesh requirements  needed to 
e s tab lis h th e d ipo le fi e Id acc u rate ly . 

T h e  mesh characteristics required for dipole modeling are employed for the s tudy  of the fields 
generated from a point  dipole source located in s e a  water (which is a conducting, attenuating 
med ium) .  Two frequencies representing the ex t remes  of low frequency applications are 
presented. Of special interest  is the s tudy of the effect of a layer of ice o n  the solutions.  
While the example presented is somewhat  idealized and limited, it should demonstrate  to the 
reader the methodology required for the solution of low frequency problems. 

Ano the r  example problem is the scattering of a plane wave by a conducting object. T h e  
problem of a circular cylinder in a plane wave field is solved and compared with the analytic 
solution. Excellent agreement  is demonstrated using the IS2D8 element .  Convergence of 
this e l emen t  is quite superior  to linear e lements  documented elsewhere. F o r  this problem, 
both the electric field vector  and the magnetic field vector equations are solved. This is 
analogous to the “sound soft” and “sound hard” scattering problems in acoustics. 

Finally, the concluding section of this paper discusses areas where fur ther  deve lopment  is 
required to solve s o m e  difficult, three dimensional problems. There  is great potential in using 
standard finite e l emen t  codes for the routine solution of electromagnetics problems. 

MAXWELL’S EQUATIONS - FIELD STRENGTH A N D  POTENTIAL FORMULATION 

Media  in which electromagnetic waves travel often exhibi t  the properties of linearity, isotropy 
and homogeneity.  This  type of medium is called a linear, isotropic, and homogeneous  (LIH)  
medium.  F o r  these media,  the electric displacement vector,  D, the magnetic field intensity, 
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H, the electric field intensity, E, the magnetic induction vector, B and the free current  
density, J are linearly related by the equations 

D = € E ;  H = B/p; J = a E  ( 1 )  

where E is the permittivity , p is the permeability and u is the conductivity of the material. If 
we restrict our discussion to time harmonic fields a t  a single, arbitrary frequency, the field 
vectors E and H take the form 

E = EO exp( iwt) 

H = Ho exp(iwt)  

where w is the frequency and i = fi. For time harmonic 
governing equations for  the spatial field variations can be 
equations and are given by [ I ]  

fields in an LIH medium,  the 
derived from the Maxwell's 

d2H 4 1 *  
dXjdXj  c 

+ 7 p + , w 2 H j O  = 0 

where 
* ia 

E ,  = E ,  - - 
W E 0  

(4) 

is the complex permittivity, c is the speed of light in the medium and e o  is the permittivity of 
free space. The subscript, r, is not  summed  as is standard in the literature of 
electromagnetism [ l ]  while the subscript i and j are s u m m e d  in the standard Cartesian tensor  
notation These equations are damped wave equations. 

The  governing equations given in ( 3 )  are the general equations to be solved for  any problem 
in electromagnetics involving LIH media. It is important  to note that  these equations are 
uncoupled. The  boundary conditions, however, may involve combinations of the field 
variables. T h e  total problem, therefore, may be strongly coupled. This  system, ( 3 ) ,  
represents six partial differential equations in the three components  of E and of H. These 
variables, however, are no t  all independent. For time harmonic applications, only three of 
these equations are independent. For two dimensional time harmonic problems, only two of 
the components  are independent. I t  is important, therefore ,  to insure tha t  the problem under  
investigation is well posed. In practice, three dimensional electromagnetic problems are 
solved by solving for  either E or H and calculating the o the r  f rom the Maxwell equations. 
For special applications, one  could choose two components  of one  field and o n e  of the other .  
I t  is important  to choose primary unknowns which are consistent with the available boundary 
conditions. 
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An alternative approach to the formulation of electromagnetic problems is to introduce 
potential quantit ies and derive governing equations for  them from the Maxwell equations. A 
vector potential, A and a scalar potential 4 are introduced by the relations 

B = v X A  

(5) 

The  potentials are n o t  independent .  They  can be related to each o ther  using the Lorentz  
gauge condition given by 

This  is n o t  the only possible gauge condition relating these quantities; however,  it is the m o s t  
widely employed [ 21. 

If the  relations in (5) are substi tuted into the Maxwell equations and t>he vector potential, A, 
is assumed to have a harmonic t ime variation given by 

A = Aoexp( iwt) ( 7 )  

then the governing equation for  A is 

P A  p P A P  
axjaxj  ax iax j  

+ 7- + KAP = O  

where 

This  system, ( S ) ,  is also a damped wave-like equation with “shear  coupling”. T h e  mixed 
partial derivative term comes  f rom the conductance property of the medium.  For 
nonconduct ing media,  this equation reduces to an undamped Helmholtz  equation. 

NAVIER’S EQUATIONS AND ELASTIC ANALOGIES 

For elastic bodies with t ime harmonic displacement response,  the displacement vector for  the 
steady state forced response (at frequency, CJ) of the domain is given by 

u = uoexp( io t )  (10) 
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The  governing equation for  a damped,  isotropic elastic media  can be written as [3]  

3%; 8%; 
axjaxj a x  idx j 

G- + (X+G)- + ( p w 2 -  iwb)uP = 0 

where G is the shear  modulus,  X is the Lame  constant,  p is the mass density and b is the 
damping coefficient. A n  alternative form is 

d2U p a 2 U p  

ax j ax j  ax iax j  
+ Hi------ + H2uT = 0 

where 

(13) 
H 2  = p w 2 -  iwb 

G 
H I  = - 

G 1  

are complex material parameters.  These are the equat ions which are solved by finite e lement  
codes designed for the solution of forced, harmonic elastic sys tems (such  as NASTRAN). 

I t  is desired to draw an analogy between t,he Navier equat ions and the Maxwell  equations.  
This has  been discussed in t h e  l i terature  previously for the scalar Helmholtz  equation [ 4 ] .  
Following this approach, introduce t h e  relation between Young’s  modulus ,  Y and t h e  s h e a r  
modulus G 

Y = aG = 2(1+v)G ( 14) 

where the Poisson’s ratio, v, is 
a v = -  
2 

If the parameter CY is chosen large enough so tha t  

a+l = a 

then 

HI 0 

T h e  Navier equations,  unde r  this choice of CY, reduce to the Maxwell  equat ions of ( 3 ) .  For 
m o s t  computers ,  a value of Q = lo2’ is usually sufficient [ 4 ] .  T h e  shea r  modulus ,  G ,  can be 
chosen arbitrarily. 

If the problem of interest  is two dimensional,  the Navier equat ions m u s t  be reduced to the 
equations of ei ther  plane stress or plane strain.  For plane stress,  introduce the parameter,  p ,  
in the relation 
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Y = P G  

where 

If ,B is chosen so tha t  

then,  for the case of plane stress, (41 

H i  0 

For scalar field problems on m o s t  computers ,  the choice of p = 
shear  modulus,  G,  can still be chosen arbitrarily. 

is sufficient (41. The  

For either the two dimensional plane stress analogy or the three dimensional analogy, the 
complex electromagnetic material properties are related to the elastic properties through the 
e qu ation 

The  full Maxwell equations for an arbitrary LIH medium ( two or three dimensional) can be 
solved by any finite e l emen t  code which solves  the Navier equations if the material properties 
are chosen appropriately and if the boundary conditions can be related to the applied forces 
and displacements. Boundary conditions will be discussed more rigorously in a later section. 

A n  analogy can be formulated fo r  the magnetic vector potential if the medium is 
nonconducting. In this case, the procedure is identical to the previous discussion as the 
mixed derivative te rms  d o  n o t  appear. I f  t h e  material is conduct.ing, an analogy can be made 
if 

This  is possible if the elastic constants are complex. Since m o s t  structural codes d o  no t  
permit  complex material constants, the implementation would prove difficult. If one  
examines these material analogies, however ,  i t  can be seen tha t  the required complex stiffness 
matrix can be formed by the s u m  of two real stiffness matrices multiplied by complex 
coefficients. NASTRAN can accomplish this by using DMAP instructions. T h e  imaginary 
part of the stiff ness matrix can be calculated in an analogy where 
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n 

p u  c‘ 
w 

This matrix can be saved, mu  
with 

u2 
C2 

H = -  H I  = O ;  2 

tiplied by - i, and added to the stiffness matrix for a problem 

The  new stiffness matrix will be the required matrix 

PIECEWISE HOMOGENEOUS MEDIA 

In many applications, it is necessary to describe the electromagnetic fields which pass from 
one  medium t.0 another .  Such problems are piecewise homogeneous.  For  problems with 
only dielectric mat.erials ( n o  conducting materials), this can be done  by insuring all elements 
contain only one  material and using different e lement  material properties for  the different 
media. The  procedure is identical to solving problems where the density or elastic modulus 
varies from e lement  to element .  

For conducting media., the “viscous” damping coefficient needs to vary from e l e m e n t  to 
element .  This  is n o t  possible directly with the NASTRAN code. I t  is possible, through the 
use of D M A P  statements ,  to simulate this with two matrix formulation runs.  Form the mass 
matrix for the model  with a mass density given by  

The  mass density in each e lement  can be different representing the different conducting 
media. I t  is desired to form a damping matrix, B, which has the e lement  damping coefficients 
given by 

produces B G P P  b =- 
2 

c €0 

This  is accomplished if 

B = Mi 

The  first matrix formu,ation proLJces the Ml matrix. This  can be written out  and read in 
(using OUTF’UT2/INPUT2) as the damping matrix in run two which now uses a mass density 

to fo rm the true analogous mass matrix. Each e lement  can have different permitt,ivities and 
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permeabilities. The  only requirement  is that  the material parameters are constant  within an 
elem en  t. 

Using the approach summarized above, multiple conducting media can be modeled with 
NASTRAN.  A n  example of a layered media problem is presented in the following section. 
When this procedure is applied in NASTRAN,  i t  is necessary to add a single damper  e lement  
to the model  with a zero damping coefficient. This  will signal NASTRAN tha t  the problem is 
fully complex and tha t  the complex solver is required. Reading in the damping matrix is no t  
sufficient for  NASTRAN to choose the complex solver. If o ther  dampers  are present  in the 
model, this is unnecessary. 

TWO DIMENSIONAL EXAMPLE PROBLEMS 

Several example problems are solved in this section to demonstrate the use of the analogies 
described previously. The  problems presented range from very low frequency examples (at 1 
H z )  to high frequency scattering examples (at 3 x 10' Hz) .  All the models  employ the 8 
node,  quadratic, isoparametric quadrilateral e lement  ( ISZD8).  These elements  perform well 
for a variety of problems and yield accurate results for  the problems with available analytic 
solutions. 

EXAMPLE 1 :  A DIPOLE SOURCE I N  FREE SPACE 

As the first problem, the field produced by a two-dimensional point dipole in free space was 
computed to explore the use of analogies with NASTRAN.  Information gained by computing 
the fields for  this case will also be useful if fields in layered media need to be computed with 
a dipole source located in air. T h e  finite e lement  mesh  used is shown in increasing detail in 
Figures 1 ,  2, and 3. Similar mesh  configurations were used with two sizes of elements. For 
the larger e lements  the overall dimensions of the mesh (Figure 1 )  are G.108 by 6.108 m. 
T h u s  each of the larger square elements  in Figure 1 are 10' by 10' m ,  and there  are three of 
these elements  for each wavelength. T h e  overall dimensions of the smaller mesh  are 3.10' by 
3.10' m .  For this mesh  there are six e lements  per wavelength. T h e  relative dimensions of all 
e lements  in the two meshes  are equal, so each is portrayed by the figures. T h e  radial mesh in 
the lower left corner  of Figure 1 ,  which is graded down to ever  smaller elements, contains the 
dipole source.  In  this section of the mesh ,  which has  dimensions 10' by 10' m in the larger 
mesh (5.107 by 5-107 m in the smaller), the e lements  are much smaller and the only 
consideration on  the e lement  size is to keep the aspect ratios within reasonable bounds  (less 
than 1:8). 

Boundary conditions are applied fo the model  to provide fo r  wave absorption at the outer  
boundary, to apply symmetry conditions o n  the axes of symmetry,  and to model  the dipole 
source. T h e  dipole boundary conditions are applied along the small circular boundary in the 
lower leftrhand corner of Figure 3. Along the outer  boundaries (upper  and right sides in 
Figure l ) ,  plane wave absorbing boundary conditions i n  the form of dashpots were applied. 
Along the axes of symmetry ( lower and left sides in  Figures 1 ,  2,  and 3) ,  symmetric 
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boundary conditions were applied. The  dipole source is modeled by imposing enforced values 
of the electric field for a dipole on  the circular boundary sector in the lower left corner of 
Figure 3. The radius of this sector is 0.1 m .  T h e  complete solution for  a two dimensional 
dipole can be found in [5] 

The  electric fields computed for  this problem were compared with analytic solutions [ 51, and 
both meshes were found to produce reasonably accurate values. The  amplitude and phase of 
the solution for  the larger mesh are shown in Figures 4 and 5. and the amplitude and phase 
of the near-field solution are shown in Figures 6 and 7.  The  values plotted are the z- 
component  of the electric field along a radial line 45 degrees f rom the lower axis. For  the 
larger mesh,  the error in the large square e lements  was o n  the  order  of 5 percent, and in the 
radial block the error was of the order  of 1 percent. F o r  this model ,  the region containing the 
radial elements is considered to be the region of interest, and the outside region is included 
only to model several wavelengths to provide for  suitable wave absorbing boundaries. 
Therefore, in  the region of interest, very good results were obtained. 

For  the larger mesh,  two wave lengths were modeled before the absorbing boundary 
conditions are applied, and for the smaller mesh only o n e  wave length was modeled. 
Decreasing the number  of wave lengths modeled inside the boundary increased the error  in 
the radial elements, the region of interest. The  change in mesh size resulted in errors  of 4 
percen t  in both the  square and radial e lements  in the smaller mesh.  A t  the same time, the 
increase in the number  of elements  per wave length in the ou te r  region slightly increased the 
accuracy there. 

EXAMPLE 2: A DIPOLE S O U R C E  I N  SEA WATER 

Computing the field due  to a dipole source in s e a  water was the first application to modeling 
electromagnetic fields in a conducting medium. A s  with the preceding problem, the region 
containing sea  water was assumed to have infinite extent ,  so tha t  comparisons could be made 
to an analytic solution (51. Since for frequencies near  o n e  Hertz ,  s e a  water is a good 
conductor, the electromagnetic wave length, equal to 1581 m ,  is considerably shorter  than 
3.10' in free space. Therefore ,  the region modeled for this problem was correspondingly 
smaller than the region for  the preceding problem. T h e  finite e lement  mesh used is shown in 
increasing detail in Figures 8, 9, and 10. The  ou te r  dimensions of this mesh are 5000 by 
5000 m .  In the outer  region of Figure 8,  the  larger square elements  are 250 m o n  a s i d e ,  and 
the smaller square elements  o n  the left side are 125 m on  a side. The  elements  on  the left 
were made smaller because this s ame  mesh was to be used as  part of the layered media 
problem, and the use of various e l emen t  sizes allowed checking the performance of 
transitions from smaller to larger e lements .  The  radial mesh in the lower left corner  of 
Figure 8 contains the dipole source which is too small to be seen  in this figure, bu t  can be 
seen  in Figure 10. This  section of the mesh  has dimensions 125  by 125 m.  Here again the 
elements  are much smaller, and the principal consideration is to keep the aspect ratios 
reasonable. 
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Again, boundary conditions are applied to provide for  wave absorption on  the outer  
boundary, to apply symmetry conditions on the axes of symmetry, and to model  the dipole 
source. The  dipole boundary conditions are applied along the small circular boundary in the 
lower leftchand corner of Figure 10. Along the outer  boundaries (upper  and right sides in  
Figure 8),  plane wave absorbing dashpots were applied. Along the axes of symmetry (lower 
and left sides in Figures 8, 9, and lo), symmetr ic  boundary conditions were applied. T h e  
dipole source is modeled by imposing enforced values of the electric field for  a dipole on  the 
circular boundary sector in the lower left corner  of Figure 10. The  radius of this sector is also 
0.1 m .  

The electric fields computed for  this problem were compared with analytic solutions, and were 
found to produce accurate values. The  amplitude and phase of the solution along the 
horizontal axis of symmetry are shown in Figures 11 and 12. The  solution phase is plotted 
between -180 degrees and 180 degrees, therefore, an apparent discontinuity arises at radii at 
which the phase decreases past -180 degrees. The  error  in the solution was on the order  of 1 
percent everywhere. Again for  this model, the region containing the radial e lements  is 
considered to be the region of interest. T h e  outside region is included only to model enough 
of the medium to provide for  wave absorbing boundaries. Therefore  very good results were 
obtained in the region of interest. The  amplitude and phase of the solution along the vertical 
axis of symmetry are shown in Figures 13 and 14. Excellent agreement  with the analytic 
solution is demonstrated in this direction also. 

EXAMPLE 3: MODELING A DIPOLE SOURCE I N  A FINITE DEF'TH OF SEA WATER 

The problem under  consideration is a dipole source located in a finite depth of sea  water. 
The  current  modeling is limited to a two-dimensional line dipole. The  general problem under  
consideration is shown in Figure 15 .  A two-dimensional dipole is located at a distance A 
beneath the surface of the s e a  water. The total depth of the s e a  water is H.  The sea  water 
may be covered by a layer of ice of thickness D .  The  air on  top and the mud  beneath the s e a  
water are assumed to be infinite. T h e  problem currently modeled assumes a s e a  depth of 250 
m .  The  dipole source is located 125  m beneath the surface of the s e a  water. Models  have 
been developed for  s e a  water without  ice and for s e a  water covered by 1 m of ice. The  total 
mesh for the problem under  consideration for  a dipole source radiating at 1 hertz is s h o w n  in 
Figure IG. 

The  s e a  water is modeled for  a total of 7500 m (approximately 30 skin depths) and then is 
terminated by a plane wave radiation boundary condition. The  m u d  is modeled o u t  to 16000 
by lG000 m (which is approximately 20  skin depths). In the model  shown,  the air is also 
modeled o u t  to 16000 by 16000 m .  Both media are terminated by plane wave radiation 
boundary conditions. Since m u d  and s e a  water are attenuating media, the radiation boundary 
condition assumption is no t  expected to significantly influence the solution (this has  been 
demonstrated for  the case of a line dipole in an infinite region of s e a  water as discussed 
previously). For  the air, however, i t  is often required to model  a region on  the order  of 
several wave lengths. Fo r  air (at 1 hertz excitation), this corresponds to approximately 
300,000,000 m .  Results in air, however, are only of interest for  distances less than 10,000 m 
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from the source.  T h e  air, therefore,  was modeled as far as the mud  ( fo r  geometric 
symmetry)  and absorbing boundary conditions were applied at the edge of the mesh .  

Figure 17 shows a blowup of the entire s ea  water region. T h e  transitioning mesh  in the air 
and the s e a  water is shown.  For the dipole in s e a  water, a mesh  dimension of 125  by 125  m 
was demonstrated to predict accurate results. This  is the dimension of the e lements  in the 
s e a  water as shown.  In the air and mud ,  the elements  are allowed to expand in a consistent 
manner  to a final dimension of 1000 by 1000 m .  T h e  larger e lements  are permissible since 
the wavelength and attenuation distance in m u d  are larger than in s e a  water ( the  wavelength 
in m u d  is in the order  of  5000 m and the skin depth in m u d  is o n  the order  of 796 m ) .  T h e  
transitioning is developed to insure that  the e lement  aspect ratios and interior angles remain 
within acceptable limits. Near  the dipole source,  a radially expanding mesh is employed as in 
the previous example.  This mesh is sufficient to establish the near  source field accurately. 
As in the previous example,  the dipole is modeled as a small  circular ring of nodes.  On tha t  
ring of nodes,  the analytic solution for  a line dipole in an infinite medium of s e a  water is 
applied as a boundary condition. The  model  assumes,  therefore,  t ha t  close enough to the 
dipole, the ice, air and mud  will have a negligible effect o n  the field variable solutions.  T h e  
required inner  mesh  dimension will be determined by a convergence s tudy.  This  parameter  
will be dependent  upon the location of the source relative to the boundaries and the 
frequency of the source.  T h e  model  described was modified to allow for a 1 m layer of ice. 
T h e  resul t ing mesh  is the same as the previous one  except  that between the s e a  water - air 
interface is a layer of elements  1 m thick which represent  the ice. Since this dimension is 
small  relative to the domain modeled,  it is observable only o n  a blowup of the mesh .  

Figures 18 and 19 show the amplitude and phase of the elect.ric field component ,  E,, along 
the midline of the s e a  water. Solutions with and without  ice are shown.  A decaying field is 
observed with a characteristic knee in the solution. This  occurs near the point  where the 
phase crosses the zero line. This  phenomena  has  also been observed experimentally [SI. T h e  
dropoff in the phase near the tail of the plot is probably due  to the dashpot  boundary 
condition. Figures 20 and 21 show the amplitude and phase of the EZ componen t  along the 
surface of the  s e a  water. Qualitatively, the solution is similar to the  midline solution. T h e  
amplitude does  not ,  however ,  d rop  off as rapidly and the phase is shifted to a larger mean.  I t  
is interesting to note that  at this low frequency the ice has negligible effect o n  the solution. 

The  same  problem was studied for  a higher frequency source at 1000 hz. The  mesh  
employed is shown in Figure 22. The  s e a  water region is modeled for 250 m by 250 m.  This  
corresponds to about  50 skin depths .  T h e  m u d  is modeled fo r  an additional 500 m 
corresponding to 20 s k i n  depths  in m u d .  T h e  air is modeled o u t  to 2000 additional meters.  
On all exterior boundaries,  the dashpot  absorbing conditions are employed.  

T h e  amplititude and phase of the EZ component  are shown in Figures  23 and 24 along the 
midline of the  s e a  water. Again, solutions with and without  ice are shown.  T h e  solution has  
a typical decaying amplitude with a sawtoothed phase characteristic. This  is similar to the 
solution f o r  a dipole in a conducting medium.  I t  is interesting to note ,  however,  that  while 
tJhe wavelength corresponds to the wavelength of the media,  the decay is slower than for  a 
dipole in infinite s e a  water. T h e  amplitude is receiving significant contribution from the 
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surface waves along the s e a  surface. Along the s e a  midline, little influence of the ice can be 
seen.  

Figures 25 and 26 show the amplitude and phase of the EZ component  along the surface of 
the s e a  water (with and without  ice). The  ice clearly has a significant influence o n  this 
solution. T h e  amplitude without ice follows the amplitude with ice for about  10 skin depths  
of the s e a  water. T h e  two solutions then change and the amplitude with ice is larger. Even 
though ice has  a small conductivity ( mhos) ,  i t  acts as a wave guide keeping the surface 
wave of larger amplitude than without the ice. The  phase, however, shows little difference 
with and without  ice. T h e  solutions are qualitatively similar with the exception that  the ice 
guides the surface wave. Note that  the deviation of the phase and the slight increase in 
amplitude toward the end  o f  the plots is probably due to reflections from the dashpots. 

EXAMPLE 4: P L A N E  W A V E  SCATTERING FROM A R I G H T  CIRCULAR CYLINDER 

A s  a final example, consider the scattering of an incident plane wave by an infinite, perfect,ly 
conducting circular cylinder. The  boundary condition on  the cylinder is tha t  the longitudinal 
component  of the electric field m u s t  vanish o n  the surface of the cylinder and that  the 
longitudinal componen t  of the magnetic field m u s t  be normal  to the surface. If the governing 
equations for  the scattered wave only are considered, the boundary conditions for the 
scattered wave m u s t  remove the EZ component  of the plane wave at the cylinder surface. In 
addition, the normal  derivative of the H Z  component  of the plane wave m u s t  vanish at the 
surface of the cylinder. A t  infinity, the scattered wave m u s t  vanish. The  problem considered 
is for a I m cylinder with an incident plane wave of 1 m wave length ( the  frequency, 
therefore, is 3 x 10' Hz) .  

The  first mesh at tempted employed eight e lements  in the azimuthal direction and quarter 
wavelength dimension in the radial direction, As is shown subsequently, this mesh 
performed adequately for  the longitudinal component  of the magnetic field b u t  was no t  
sufficient to accurately solve the longitudinal electric field problem. The  mesh  employed for 
the longitudinal electric field component  is shown in Figure 27. T h e  mesh was generated 
using the IDEAS [7]  package. The  design criterion was to generate a mesh as close to 
uniform in dimension as possible with an e lement  size equal to one  quarter of the incident 
wave length. T h e  performance of this mesh was superior to that of a mesh with fixed radial 
dimensions of o n e  quarter of a wavelength and aspect ratios within 1 to 5. The  zero field 
condition was modeled with absorbing dashpots. For this case, a cylindrical wave condition 
would be superior due  to the geometry of the problem. This  was compared with the simple 
dashpot  condition for the magnetic field solution. 

Figure 28 is a plot of the normalized amplitude of the scattered electric field intensity on  the 
forward scattering side of the cylinder. The  overall agreement  is quite good. T h e  maximum 
er ror  is less than 5% compared with the analytic solution. Very near the cylinder, however, 
the largest deviation is observed. Indeed it is only in this region where the error is 1a.rger 
than 1% Figure 29 is a blowup of this region. T h e  analytic solution flattens near  the cylinder 
while the finite e l emen t  solution demonstrates  a sharp  dip. There is significant ripple in  the 
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solution in this region which may indicate reflection problems between the cylinder and the 
dashpot. A blowup of the analytic solution is shown in Figure 30. The  region which 
appeared flat in Figure 29 has  a slight dip as demonstrated in Figure 30. The finite e lement  
solution exaggerates this dip. Since the elements  are o n  the order  of 0.25 m (one  quarter of a 
wavelength), it is ev ident  f rom Figure 30 that  this mesh density would be insufficient to 
totally reproduce this phenomena .  Overall, however, the solution is quite good. 

Figure 31 shows a plot of the phase of the forward scattered field. The  finite e lement  results 
are a lmost  identical to the analytic solution. This  demonstrates that  while small amplitude 
errors  may be introduced into the solution, the general character of the waves are accurately 
predicted by the finite e lement  solution. Figure 32 shows the normalized amplitude of the 
scattered electric field o n  the back side of the cylinder. T h e  finite e lement  results agree very 
well with the analytic solution. All errors are bounded by 1% even near the dashpot 
boundary condition. Figure 33 shows a plot of the phase of the electric field on the 
backscattering side of the cylinder. Again, excellent agreement  is seen.  The  sawtoothed 
phase cha.racteristic is accurately predicted and the ramping behavior is accurate. 

Fo r  this example, the longitudinal component  of the magnetic field vector was also resolved. 
The  longitudinal components  of the E and H fields are the only independent components  for  
the two dimensional applications. Figure 33 shows the amplitude of the H Z  component  as a 
function of distance away f rom the cylinder along the  back scattering side. The  finite e lement  
solution is only negligibly different from the analytic solution. Figure 34 shows the amplitude 
along a radial line at 112.5 degrees from the incident wave. This represents the worst c s e  
and ye t  the two solutions agree quite well. I t  should be noted that  the total amplitude along 
this line is quite small. I t  is remarkable that  the solution is this accurate. In addition, the 
finite e lement  results quite accurately capture the spiked dip in the solution even though only 
four  e lements  per wavelength were employed. 

A n  important  observation is tha t  accurate solutions were generated with approximately fou r  
IS2D8 elements  per wavelength. This  problem has been solved previously with linear 
quadrilateral e lements  [8] .  In that  study, ten elements  per wavelength were required 
necessitating a significantly greater number  of degrees of freedom to achieve an accurate 
solution. 

CONCLUDING REMARKS 

Maxwell’s equations were solved for  a variety of example problems in two dimensions. A n  
interesting outcome of the low frequency examples was the ability to predict the wave guide 
effects of the ice in the layered media problem and the knee response in the amplitude. In 
addition, this problem demonstrated that  relatively complicated problems can be solved by 
routine methodology. This  conclusion should also hold for  three dimensional applications. 

The  scattering example demonstrates  the ability to handle high frequency applications. T h e  
conclusion tha t  only fou r  IS2D8 elements  are required per wavelength indicates that, 
considerable economy should be realized by using quadratic elements for  harmonic response 
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applications. This  conclusion should be valid for  structural and acoustic applications as well as 
for  e le c tro m agn e tic applications. 

Since the two dimensional problems exhibit totally uncoupled boundary conditions, the 
solution of two dimensional  problems in electromagnetics is the same as solution of the scalar 
wave equation. In three dimensions, this is n o t  the case. The  boundary conditions 
encountered are often coupled. This  poses a problem for  certain situations. 

A common three dimensional boundary condition is the perfect conductor condition of zero 
tangential E and normal  H. For high frequency applications, this is no t  a problem because 
several skin depths  of the conductor can be modeled easily since this dimension will be small 
relative to the conductor’s size. The  conductor will damp  out  and absorb the waves 
appropriately. This  indicates that  radar cross section problems in three dimensions can be 
hand led by elastic analogies. 

For low frequency applications, the presence of a conductor is n o t  as easy to deal with since 
the skin depth is often large relative to the size of the conductor. The  vanishing of the 
tangential E field can be handled by multipoint const,raints (MPCs). The  vanishing of the 
normal  H field is n o t  as trivially solved. Methodologies for  enforcing this condition are under  
investigation. I t  may be possible to extend the concept of MPCs to include linear 
combinations of first partial derivatives. This  would solve the problem. 

The  o the r  major problem to be addressed is the fact that many electromagnetic problems are 
exterior problems. They  involve either extremely large or infinite domains. The  solution is 
of interest, however ,  only in a small domain.  I t  is necessary, therefore, to reduce the 
modeled domain and to implement  a boundary condition which accounts for  the remaining 
media. In this paper, the simple plane wave condition was employed. While this works, 
often large domains  m u s t  be modeled. Other  conditions have been explored; however, 
additional research is required. Infinite e lements  (employed for  some  limited scalar 
applications [ 91) hold promise. These are currently being investigated also. 

The  remainder  of the boundary conditions encountered in mos t  applications can be handled 
trivially with elastic finite e lement  codes like NASTRAN. T h i s  paper h a s  demonstrated the 
ability to handle two dimensional problems and has provided the formulation for  three 
dimensional problems. When absorbing boundary conditions become available and the zero 
normality condition for  the H field is developed, i t  will be possible to solve virtually all 
problems in electromagnetics (which adhere to the assumptions of Maxwell’s equations) with 
elastic finite e lement  codes like NASTRAN. 
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Fig. 1. FINITE ELEMENT MODEL FOR POINT DIPOLE IN FREE SPACE 

Fig. 2. RADIAL DIPOLE MODEL 
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Fig. 7. NEAR FIELD PHASE FOR POINT DIPOLE IN FREE SPACE 
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Fig. 9. RADIAL DIPOLE MODEL IN SEA WATER 

Fig. 10. NEAR DIPOLE MODEL IN SEA \Z’ATER 
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Fig. 11. AMPLITUDE ALONG HORIZONTAL SYMMETRY AXIS FOR POINT DIPOLE - 
IN SEA WATER 

I 

100 00 

N 
I 
0 

-7 63L-06- 
O 

W 

3 P 

-100.00 

-200.00 

DISTANCE FROM THE SOURCE 

Fig. 12. PHASE ALONG HORIZONTAL SYMMETRY AXIS FOR POINT DIPOLE I N  
SEA WATER 

234 



1.00E-15 I 
r -1 - AlULIzIC SOLUIIOII 

rLM - V U T t t u .  
DISTANCE FROM THE SOURCE 

Fig. 13. AMPLITUDE ALONG VERTICAL SYMMETRY AXIS FOR POINT DIPOLE IN 
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Fig. 15. POINT DIPOLE IN SEA WATER WITH AIR, ICE AND MUD 

Fig. 16. FINITE ELEMENT MODEL FOR DIPOLE IN SEA WATER WITH AIR, MUD 
AND ICE 
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Fig. 22. FINITE ELEMENT MESH FOR 1000 H Z .  SOURCE 
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Fig. 27. FINITE ELEMENT MESH FOR SCATI'ERING ABOUT CIRCULAR CYLINDER 
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Fig. 33. PHASE OF THE BACK SCATI'ERED E-Z WAVE 
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